S-extremal strongly modular lattices

نویسندگان

  • Kristina SCHINDELAR
  • Gabriele Nebe
  • Kristina Schindelar
چکیده

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S - extremal strongly modular lattices par

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only fin...

متن کامل

Extremal Lattices of Minimum 8 Related to the Mathieu Group M 22

In this paper, we construct three new extremal lattices of minimum 8; one is 3-modular and of dimension 40, the two others are unimodular of dimension 80. They are strongly connected to the 20-dimensional lattice with automorphism group isomorphic to 2:M 22 :2.

متن کامل

Low dimensional strongly perfect lattices. III: Dual strongly perfect lattices of dimension 14

The extremal 3-modular lattice [±G2(3)]14 with automorphism group C2 × G2(F3) is the unique dual strongly perfect lattice of dimension 14.

متن کامل

Golden lattices

A golden lattice is an even unimodular Z[ 1+ √ 5 2 ]-lattice of which the Hilbert theta series is an extremal Hilbert modular form. We construct golden lattices from extremal even unimodular lattices and obtain families of dense modular lattices.

متن کامل

Boris Venkov’s Theory of Lattices and Spherical Designs

Boris Venkov passed away on November 10, 2011, just 5 days before his 77th birthday. His death overshadowed the conference “Diophantine methods, lattices, and arithmetic theory of quadratic forms” November 13-18, 2011, at the BIRS in Banff (Canada), where his important contributions to the theory of lattices, modular forms and spherical designs played a central role. This article gives a short ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008